日韩欧美国产精品,在线播放国产区,欧美人与物videos另类一,日韩经典欧美一区二区三区,成人午夜视频在线,无毒不卡,香蕉97碰碰视频免费

2017考研數(shù)學(xué) 數(shù)學(xué)三深度解讀

上傳人:沈*** 文檔編號(hào):136399868 上傳時(shí)間:2022-08-16 格式:DOCX 頁數(shù):5 大?。?1.01KB
收藏 版權(quán)申訴 舉報(bào) 下載
2017考研數(shù)學(xué) 數(shù)學(xué)三深度解讀_第1頁
第1頁 / 共5頁
2017考研數(shù)學(xué) 數(shù)學(xué)三深度解讀_第2頁
第2頁 / 共5頁
2017考研數(shù)學(xué) 數(shù)學(xué)三深度解讀_第3頁
第3頁 / 共5頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2017考研數(shù)學(xué) 數(shù)學(xué)三深度解讀》由會(huì)員分享,可在線閱讀,更多相關(guān)《2017考研數(shù)學(xué) 數(shù)學(xué)三深度解讀(5頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、 點(diǎn)這里,看更多數(shù)學(xué)資料 2017考研已經(jīng)拉開序幕,很多考生不知道如何選擇適合自己的考研復(fù)習(xí)資料。中公考研輔導(dǎo)老師為考生準(zhǔn)備了考研數(shù)學(xué)方面的建議,希望可以助考生一臂之力。同時(shí)中公考研特為廣大學(xué)子推出考研集訓(xùn)營(yíng)、專業(yè)課輔導(dǎo)、精品網(wǎng)課、vip1對(duì)1等課程,針對(duì)每一個(gè)科目要點(diǎn)進(jìn)行深入的指導(dǎo)分析,歡迎各位考生了解咨詢。   考研數(shù)學(xué)三的考試科目為微積分、線性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)三部分的內(nèi)容,下面就是中公考研小編整理的相關(guān)數(shù)學(xué)三的重要內(nèi)容,包含考點(diǎn)、試卷結(jié)構(gòu)等內(nèi)容,供2017考研的同學(xué)參考。   考試形式和試卷結(jié)構(gòu)   一、試卷滿分及考試時(shí)間

2、   試卷滿分為150分,考試時(shí)間為180分鐘   二、答題方式   答題方式為閉卷、筆試   三、試卷內(nèi)容結(jié)構(gòu)   微積分約56%   線性代數(shù)約22%   概率論與數(shù)理統(tǒng)計(jì)約22%   四、試卷題型結(jié)構(gòu)   單項(xiàng)選擇題選題8小題,每小題4分,共32分   填空題6小題,每小題4分,共24分   解答題(包括證明題)9小題,共94分   微積分   一、函數(shù)、極限、連續(xù)   考試內(nèi)容   函數(shù)的概念及表示法函數(shù)的有界性、單調(diào)性、周期性和奇偶性復(fù)合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù)基本初等函數(shù)的性質(zhì)及其圖形初等函數(shù)函數(shù)關(guān)系的建立   數(shù)列極限與函數(shù)極限的定義及其性質(zhì)

3、函數(shù)的左極限和右極限無窮小量和無窮大量的概念及其關(guān)系無窮小量的性質(zhì)及無窮小量的比較極限的四則運(yùn)算極限存在的兩個(gè)準(zhǔn)則:?jiǎn)握{(diào)有界準(zhǔn)則和夾逼準(zhǔn)則兩個(gè)重要極限   函數(shù)連續(xù)的概念函數(shù)間斷點(diǎn)的類型初等函數(shù)的連續(xù)性閉區(qū)間上連續(xù)函數(shù)的性質(zhì)   二、一元函數(shù)微分學(xué)   考試內(nèi)容   導(dǎo)數(shù)和微分的概念導(dǎo)數(shù)的幾何意義和經(jīng)濟(jì)意義函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系平面曲線的切線與法線導(dǎo)數(shù)和微分的四則運(yùn)算基本初等函數(shù)的導(dǎo)數(shù)復(fù)合函數(shù)、反函數(shù)和隱函數(shù)的微分法高階導(dǎo)數(shù)一階微分形式的不變性微分中值定理洛必達(dá)(L'Hospital)法則函數(shù)單調(diào)性的判別函數(shù)的極值函數(shù)圖形的凹凸性、拐點(diǎn)及漸近線函數(shù)圖形的描繪函數(shù)的最大值與最小值

4、   三、一元函數(shù)積分學(xué)   考試內(nèi)容   原函數(shù)和不定積分的概念不定積分的基本性質(zhì)基本積分公式定積分的概念和基本性質(zhì)定積分中值定理積分上限的函數(shù)及其導(dǎo)數(shù)牛頓-萊布尼茨(Newton-Leibniz)公式不定積分和定積分的換元積分法與分部積分法反常(廣義)積分定積分的應(yīng)用   四、多元函數(shù)微積分學(xué)   考試內(nèi)容   多元函數(shù)的概念二元函數(shù)的幾何意義二元函數(shù)的極限與連續(xù)的概念有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì)多元函數(shù)偏導(dǎo)數(shù)的概念與計(jì)算多元復(fù)合函數(shù)的求導(dǎo)法與隱函數(shù)求導(dǎo)法二階偏導(dǎo)數(shù)全微分多元函數(shù)的極值和條件極值、最大值和最小值二重積分的概念、基本性質(zhì)和計(jì)算無界區(qū)域上簡(jiǎn)單的反常二重積分   

5、五、無窮級(jí)數(shù)   考試內(nèi)容   常數(shù)項(xiàng)級(jí)數(shù)的收斂與發(fā)散的概念收斂級(jí)數(shù)的和的概念級(jí)數(shù)的基本性質(zhì)與收斂的必要條件幾何級(jí)數(shù)與級(jí)數(shù)及其收斂性正項(xiàng)級(jí)數(shù)收斂性的判別法任意項(xiàng)級(jí)數(shù)的絕對(duì)收斂與條件收斂交錯(cuò)級(jí)數(shù)與萊布尼茨定理冪級(jí)數(shù)及其收斂半徑、收斂區(qū)間(指開區(qū)間)和收斂域冪級(jí)數(shù)的和函數(shù)冪級(jí)數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì)簡(jiǎn)單冪級(jí)數(shù)的和函數(shù)的求法初等函數(shù)的冪級(jí)數(shù)展開式   六、常微分方程與差分方程   考試內(nèi)容   常微分方程的基本概念變量可分離的微分方程齊次微分方程一階線性微分方程線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理二階常系數(shù)齊次線性微分方程及簡(jiǎn)單的非齊次線性微分方程差分與差分方程的概念差分方程的通解與特解一

6、階常系數(shù)線性差分方程微分方程的簡(jiǎn)單應(yīng)用   線性代數(shù)   一、行列式   考試內(nèi)容   行列式的概念和基本性質(zhì)行列式按行(列)展開定理   二、矩陣   考試內(nèi)容   矩陣的概念矩陣的線性運(yùn)算矩陣的乘法方陣的冪方陣乘積的行列式矩陣的轉(zhuǎn)置逆矩陣的概念和性質(zhì)矩陣可逆的充分必要條件伴隨矩陣矩陣的初等變換初等矩陣矩陣的秩矩陣的等價(jià)分塊矩陣及其運(yùn)算   三、向量   考試內(nèi)容   向量的概念向量的線性組合與線性表示向量組的線性相關(guān)與線性無關(guān)向量組的極大線性無關(guān)組等價(jià)向量組向量組的秩向量組的秩與矩陣的秩之間的關(guān)系向量的內(nèi)積線性無關(guān)向量組的正交規(guī)范化方法   四、線性方程組   考試

7、內(nèi)容   線性方程組的克拉默(Cramer)法則線性方程組有解和無解的判定齊次線性方程組的基礎(chǔ)解系和通解非齊次線性方程組的解與相應(yīng)的齊次線性方程組(導(dǎo)出組)的解之間的關(guān)系非齊次線性方程組的通解   五、矩陣的特征值和特征向量   考試內(nèi)容   矩陣的特征值和特征向量的概念、性質(zhì)相似矩陣的概念及性質(zhì)矩陣可相似對(duì)角化的充分必要條件及相似對(duì)角矩陣實(shí)對(duì)稱矩陣的特征值和特征向量及相似對(duì)角矩陣   六、二次型   考試內(nèi)容   二次型及其矩陣表示合同變換與合同矩陣二次型的秩慣性定理二次型的標(biāo)準(zhǔn)形和規(guī)范形用正交變換和配方法化二次型為標(biāo)準(zhǔn)形二次型及其矩陣的正定性   概率論與數(shù)理統(tǒng)計(jì)   一

8、、隨機(jī)事件和概率   考試內(nèi)容   隨機(jī)事件與樣本空間事件的關(guān)系與運(yùn)算完備事件組概率的概念概率的基本性質(zhì)古典型概率幾何型概率條件概率概率的基本公式事件的獨(dú)立性獨(dú)立重復(fù)試驗(yàn)   二、隨機(jī)變量及其分布   考試內(nèi)容   隨機(jī)變量隨機(jī)變量分布函數(shù)的概念及其性質(zhì)離散型隨機(jī)變量的概率分布連續(xù)型隨機(jī)變量的概率密度常見隨機(jī)變量的分布隨機(jī)變量函數(shù)的分布   三、多維隨機(jī)變量的分布   考試內(nèi)容   多維隨機(jī)變量及其分布函數(shù)二維離散型隨機(jī)變量的概率分布、邊緣分布和條件分布二維連續(xù)型隨機(jī)變量的概率密度、邊緣概率密度和條件密度隨機(jī)變量的獨(dú)立性和不相關(guān)性常見二維隨機(jī)變量的分布兩個(gè)及兩個(gè)以上隨機(jī)變量簡(jiǎn)單

9、函數(shù)的分布。   四、隨機(jī)變量的數(shù)字特征   考試內(nèi)容   隨機(jī)變量的數(shù)學(xué)期望(均值)、方差、標(biāo)準(zhǔn)差及其性質(zhì)隨機(jī)變量函數(shù)的數(shù)學(xué)期望切比雪夫(Chebyshev)不等式矩、協(xié)方差、相關(guān)系數(shù)及其性質(zhì)   五、大數(shù)定律和中心極限定理   考試內(nèi)容   切比雪夫大數(shù)定律伯努利(Bernoulli)大數(shù)定律辛欽(Khinchine)大數(shù)定律棣莫弗-拉普拉斯(DeMoivre-Laplace)定理列維-林德伯格(Levy-Lindberg)定理   六、數(shù)理統(tǒng)計(jì)的基本概念   考試內(nèi)容   總體個(gè)體簡(jiǎn)單隨機(jī)樣本統(tǒng)計(jì)量經(jīng)驗(yàn)分布函數(shù)樣本均值樣本方差和樣本矩分布分布分布分位數(shù)正態(tài)總體的常用抽樣分布   七、參數(shù)估計(jì)   考試內(nèi)容   點(diǎn)估計(jì)的概念估計(jì)量和估計(jì)值矩估計(jì)法最大似然估計(jì)法 在緊張的復(fù)習(xí)中,中公考研提醒您一定要充分利用備考資料和真題,并且持之以恒,最后一定可以贏得勝利。更多考研數(shù)學(xué)復(fù)習(xí)資料歡迎關(guān)注中公考研網(wǎng)。 中公考研,讓考研變得簡(jiǎn)單! 查看更多考研數(shù)學(xué)輔導(dǎo)資料

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  sobing.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!