《九年級(jí)數(shù)學(xué)上冊(cè) 21.5 應(yīng)用舉例(2)航海問(wèn)題課件 北京課改版》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《九年級(jí)數(shù)學(xué)上冊(cè) 21.5 應(yīng)用舉例(2)航海問(wèn)題課件 北京課改版(9頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、單擊此處編輯母版標(biāo)題樣式,單擊此處編輯母版文本樣式,第二級(jí),第三級(jí),第四級(jí),第五級(jí),*,*,解直角三角形應(yīng)用舉例,例,1,如圖,1,某海防哨所,O,發(fā)現(xiàn)在它的北偏西,30,距離,500m,的,A,處有一艘船,.,該船向正東方向航行,經(jīng)過(guò),3,分到達(dá)哨所東北方向的,B,處,.,求這船的航速是每時(shí)多少,km(,取,1.7)?,圖,1,解,:,設(shè),AB,與正北方向線(xiàn)交于點(diǎn),C,則,OCAB.,在,RtAOC,中,OA=,AOC=,500m,30,AC=OAsinAOC=500sin30=500 =250(m).,OC=OAcosAOC=500cos30=500 =250 (m).,在,RtCOB,中
2、,BOC=45,BC=OC=250 (m).,AB=AC+BC=250+250 =250(1+),675360,13500(m),答,:,這船的航速是每時(shí),13.5km.,250(1+1.7)=675,練一練,如圖,2,建筑物,B,在建筑物,A,的正北方向,.,在,O,地測(cè)得在,O,地的東南方向,60m,處,在,O,地的北偏東,30,方向,.,求,O,B,的距離和,A,B,的距離,.,圖,2,C,答,:O,B,的距離為,m,A,B,的距離為,m.,引例,如圖,3,在高為,100,米的山頂,A,測(cè)得地面,C,處的,俯角,為,45,地面,D,處的俯角為,30,(B,C,D,三點(diǎn)在一條直線(xiàn)上,),那
3、么,圖,3,ACB,45,30,;,在,RtABC,中,BC,米,在,RtABD,中,BD,米,;,CD,BC,米,.,100,BD,100,100,100,(,),NEXT,DAE,ADB,30,CAE,45,仰角、俯角的定義,:,仰角和俯角,:,指,視線(xiàn),和,水平線(xiàn),所成的角,.,仰角,:,視線(xiàn)在水平線(xiàn)上方時(shí),俯角,:,視線(xiàn)在水平線(xiàn)下方時(shí),BACK,例,2,如圖,4,河對(duì)岸有水塔,AB.,在,C,處測(cè)得塔頂,A,的仰角為,30,向塔前進(jìn),12m,到達(dá),D,在,D,處測(cè)得,A,的仰角為,45,求塔高,.,解,:,在,RtADB,中,BD=ABcotADB=ABcot45.,在,RtACB,中
4、,BC=ABcotACB=ABcot30.,BC,BD=CD,CD=12m,即,ABcot30,ABcot45=12,答,:,塔高為,()m.,想一想,:,還可以怎,么解,?,D,C,B,A,45,30,12m,圖,4,圖,4,評(píng)注,:,因,CD,不是可解直角三角形的一邊,這時(shí)通常可考慮用線(xiàn)段的和或差這一間接方法,.,例,2,如圖,4,河對(duì)岸有水塔,AB.,在,C,處測(cè)得塔頂,A,的仰角為,30,向塔前進(jìn),12m,到達(dá),D,在,D,處測(cè)得,A,的仰角為,45,求塔高,.,D,C,B,A,45,30,12m,另解,:,若設(shè),AB,x,則易得,BD=x.BC=x,12.,在,RtACB,中,由,A
5、CB=30,得,解得,x,小結(jié),:,本例告訴我們?cè)趹?yīng)用解直角三角形解決測(cè)量問(wèn)題時(shí),一般要先畫(huà),出測(cè)量示意圖,然后借助示意圖,利用直角三角形中角、邊之間的,數(shù)量關(guān)系求出所要求的距離或角度,.,圖,4,例,3,如圖,6,公路,MN,和公路,PQ,在點(diǎn),P,處交匯,且,QPN=30,點(diǎn),A,處有一所中學(xué),AP=160,米,假設(shè)拖拉機(jī)行駛時(shí),周?chē)?100,米內(nèi)會(huì)受到噪聲的影響,那么拖拉機(jī)在公路,MN,上沿,PN,方向行駛時(shí),學(xué)校是否會(huì)受到噪聲影響,?,說(shuō)明理由,;,如果受影響,已知拖拉機(jī)速度為,18,千米,/,時(shí),那么學(xué)校受到影響的時(shí)間為多少秒,?,B,A,Q,N,M,P,30,圖,6,C,D,解,:
6、,作,ABMN,于,B,在,RtABP,中,ABP=90,APB=30,AP=160,AB=AP=80,點(diǎn),A,到直線(xiàn),MN,的距離小于,100,米,這所中學(xué)會(huì)受到噪聲的影響,.,.,假設(shè)拖拉機(jī)在公路,MN,上沿,PN,方向行駛到,點(diǎn),C,處,學(xué)校開(kāi)始受到噪聲影響,那么,AC,100(,米,),由勾股定理,BC,60(,米,),同理拖拉機(jī)行駛到點(diǎn),D,處,學(xué)校開(kāi)始脫離,噪聲影響,那么,BD,60,米,.,CD,120(,米,),0.12,千米,學(xué)校受噪聲影響的時(shí)間,t,圖,6,(中學(xué)),1.,解直角三角形,就是在直角三角形中,知道除直角外的其他,五個(gè)元素中的兩個(gè),(,其中至少有一個(gè)是邊,),求出其它元素的,過(guò)程,.,2.,與之相關(guān)的應(yīng)用題有,:,求山高或建筑物的高,;,測(cè)量河的寬度,或物體的長(zhǎng)度,;,航行航海問(wèn)題等,.,解決這類(lèi)問(wèn)題的關(guān)鍵就是,把實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,結(jié)合示意圖,運(yùn)用解直角三角,形的知識(shí),.,3.,當(dāng)遇到,30,45,60,等特殊角時(shí),常常添加合適的輔助線(xiàn)分割,出包含這些角度的直角三角形來(lái)解決某些斜三角形的問(wèn)題,.,4.,應(yīng)用解直角三角形知識(shí)解應(yīng)用題時(shí),可按以下思維過(guò)程進(jìn)行,:,尋找直角三角形,若找不到,可構(gòu)造,;,找到的直角三角形是否可解,若不可直接求解,利用題中,的數(shù)量關(guān)系,設(shè),x,求解,.,【,課堂點(diǎn)睛,】:,