日韩欧美国产精品,在线播放国产区,欧美人与物videos另类一,日韩经典欧美一区二区三区,成人午夜视频在线,无毒不卡,香蕉97碰碰视频免费

歡迎來(lái)到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁(yè) 裝配圖網(wǎng) > 資源分類(lèi) > PPT文檔下載  

高等數(shù)學(xué)高斯公式

  • 資源ID:237075740       資源大?。?span id="iuyoeqwmke" class="font-tahoma">1.80MB        全文頁(yè)數(shù):33頁(yè)
  • 資源格式: PPT        下載積分:10積分
快捷下載 游客一鍵下載
會(huì)員登錄下載
微信登錄下載
三方登錄下載: 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要10積分
郵箱/手機(jī):
溫馨提示:
用戶名和密碼都是您填寫(xiě)的郵箱或者手機(jī)號(hào),方便查詢和重復(fù)下載(系統(tǒng)自動(dòng)生成)
支付方式: 微信支付   
驗(yàn)證碼:   換一換

 
賬號(hào):
密碼:
驗(yàn)證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開(kāi),此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁(yè)到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無(wú)水印,預(yù)覽文檔經(jīng)過(guò)壓縮,下載后原文更清晰。
5、試題試卷類(lèi)文檔,如果標(biāo)題沒(méi)有明確說(shuō)明有答案則都視為沒(méi)有答案,請(qǐng)知曉。

高等數(shù)學(xué)高斯公式

物理意義物理意義-與與散度散度小結(jié)小結(jié) 思考題思考題 作業(yè)作業(yè) flux divergence第六節(jié)第六節(jié) 高斯高斯 (Gauss)與與散度散度Gauss,K.F.(17771855)德國(guó)數(shù)學(xué)家、物理學(xué)家、天文學(xué)家德國(guó)數(shù)學(xué)家、物理學(xué)家、天文學(xué)家1 格林公式格林公式把平面上的把平面上的閉曲線積分閉曲線積分與與本節(jié)的本節(jié)的高斯公式高斯公式表達(dá)了空間閉曲面表達(dá)了空間閉曲面上的上的曲面積分曲面積分與曲面所圍空間區(qū)域上的與曲面所圍空間區(qū)域上的它有明確的物理背景它有明確的物理背景三重積分三重積分的關(guān)系的關(guān)系.所圍區(qū)域的所圍區(qū)域的二重積分二重積分聯(lián)系聯(lián)系起來(lái)起來(lái).通量與散度通量與散度.高斯高斯(Gauss)公式公式 通量與散度通量與散度2一、高一、高 斯斯 公公 式式高斯公式稱為奧高公式高斯公式稱為奧高公式,或奧斯特洛格拉斯基或奧斯特洛格拉斯基公式公式.(俄俄)1801 1861具有具有則有公式則有公式一階連續(xù)偏導(dǎo)數(shù)一階連續(xù)偏導(dǎo)數(shù),或或 高斯公式高斯公式外側(cè)外側(cè),高斯高斯(Gauss)公式公式 通量與散度通量與散度3 證明思路證明思路 分別證明以下三式分別證明以下三式,從而完成定理證明從而完成定理證明.只證其中第三式只證其中第三式,其它兩式可完全類(lèi)似地證明其它兩式可完全類(lèi)似地證明.高斯高斯(Gauss)公式公式 通量與散度通量與散度4證證 設(shè)空間區(qū)域設(shè)空間區(qū)域母線平行于母線平行于z軸的柱面軸的柱面.即邊界面即邊界面三部分組成三部分組成:(取下側(cè)取下側(cè))(取上側(cè)取上側(cè))(取外側(cè)取外側(cè))高斯高斯(Gauss)公式公式 通量與散度通量與散度5由由三重積分三重積分的計(jì)算法的計(jì)算法投影法投影法(先一后二法先一后二法)高斯高斯(Gauss)公式公式 通量與散度通量與散度6 由由曲面積分曲面積分的計(jì)算法的計(jì)算法取取下下側(cè)側(cè),取取上上側(cè)側(cè),取取外外側(cè)側(cè) 一投一投,二代二代,三定號(hào)三定號(hào)高斯高斯(Gauss)公式公式 通量與散度通量與散度7于是于是高斯高斯(Gauss)公式公式 通量與散度通量與散度8同理同理合并以上三式得合并以上三式得自自己己證證高斯公式高斯公式高斯高斯(Gauss)公式公式 通量與散度通量與散度9高斯高斯(Gauss)公式公式 通量與散度通量與散度若區(qū)域若區(qū)域的邊界曲面的邊界曲面 與任一平行于坐標(biāo)軸與任一平行于坐標(biāo)軸的直線的交點(diǎn)多于兩點(diǎn)時(shí)的直線的交點(diǎn)多于兩點(diǎn)時(shí),可以引進(jìn)幾張輔助的可以引進(jìn)幾張輔助的曲面把曲面把分為有限個(gè)閉區(qū)域分為有限個(gè)閉區(qū)域,使得每個(gè)閉區(qū)域滿使得每個(gè)閉區(qū)域滿足假設(shè)條件足假設(shè)條件,并注意到沿輔助曲面相反兩側(cè)的兩并注意到沿輔助曲面相反兩側(cè)的兩個(gè)曲面積分的絕對(duì)值相等而符號(hào)相反個(gè)曲面積分的絕對(duì)值相等而符號(hào)相反,相加時(shí)正相加時(shí)正好抵消好抵消.因此因此,高斯公式對(duì)這樣的閉區(qū)域仍是正高斯公式對(duì)這樣的閉區(qū)域仍是正確的確的.10由兩類(lèi)曲面積分之間的關(guān)系知由兩類(lèi)曲面積分之間的關(guān)系知高斯公式為計(jì)算高斯公式為計(jì)算(閉閉)曲面積分提供了曲面積分提供了它能簡(jiǎn)化曲面積分的計(jì)算它能簡(jiǎn)化曲面積分的計(jì)算.一個(gè)新途徑一個(gè)新途徑,表達(dá)了空間閉區(qū)域上的三重積分與其表達(dá)了空間閉區(qū)域上的三重積分與其邊界曲面上的曲面積分之間的關(guān)系邊界曲面上的曲面積分之間的關(guān)系.高斯高斯(Gauss)公式公式 通量與散度通量與散度高斯高斯Gauss公式的實(shí)質(zhì)公式的實(shí)質(zhì)11解解 球球 例例外側(cè)外側(cè).因因是閉曲面是閉曲面,可可利用利用高斯公式高斯公式計(jì)算計(jì)算.高斯高斯(Gauss)公式公式 通量與散度通量與散度12使用使用Guass公式時(shí)易出的差錯(cuò)公式時(shí)易出的差錯(cuò):(1)搞不清搞不清是對(duì)什么變量求偏導(dǎo)是對(duì)什么變量求偏導(dǎo);(2)不滿足高斯公式的條件不滿足高斯公式的條件,用公式計(jì)算用公式計(jì)算;(3)忽略了忽略了 的取向的取向,注意是注意是取閉曲面的取閉曲面的外側(cè)外側(cè).高斯公式高斯公式高斯高斯(Gauss)公式公式 通量與散度通量與散度13有時(shí)可作有時(shí)可作輔助面輔助面,(將輔助面上的積分減去將輔助面上的積分減去).化為閉曲面的曲面積分化為閉曲面的曲面積分,然后利用然后利用高斯公式高斯公式.對(duì)有的對(duì)有的 非閉曲面非閉曲面的曲面積分的曲面積分,高斯高斯(Gauss)公式公式 通量與散度通量與散度14例例 計(jì)算曲面積分計(jì)算曲面積分之間之間下側(cè)下側(cè).的法向量的方向余弦的法向量的方向余弦.高斯高斯(Gauss)公式公式 通量與散度通量與散度部分的部分的解解 空間曲面空間曲面在在xOy面上的面上的曲面曲面 不是不是 為利用高斯公式為利用高斯公式.投影域?yàn)橥队坝驗(yàn)檠a(bǔ)補(bǔ)構(gòu)成構(gòu)成封閉曲面封閉曲面,使用使用高斯公式高斯公式.封閉曲面封閉曲面,15由對(duì)稱性由對(duì)稱性高斯高斯(Gauss)公式公式 通量與散度通量與散度先先二二后后一一法法16故所求積分為故所求積分為高斯高斯(Gauss)公式公式 通量與散度通量與散度yxyxSdddd001d=+=17利用利用高斯公式高斯公式計(jì)算三重積分計(jì)算三重積分提示提示則則取取高斯高斯(Gauss)公式公式 通量與散度通量與散度考慮到考慮到選取相當(dāng)自由,選取相當(dāng)自由,18由高斯公式由高斯公式極坐標(biāo)極坐標(biāo)高斯高斯(Gauss)公式公式 通量與散度通量與散度19 被積函數(shù)中有抽象函數(shù)被積函數(shù)中有抽象函數(shù),故無(wú)法直接計(jì)算故無(wú)法直接計(jì)算.如直接計(jì)算如直接計(jì)算分析分析 用用高斯公式高斯公式.例例是錐面是錐面所圍立體的表面所圍立體的表面計(jì)算設(shè)計(jì)算設(shè)f(u)是有連續(xù)的導(dǎo)數(shù)是有連續(xù)的導(dǎo)數(shù),計(jì)算計(jì)算和球面和球面及及外側(cè)外側(cè).高斯高斯(Gauss)公式公式 通量與散度通量與散度20解解 由于由于故由故由高斯公式高斯公式=球球高斯高斯(Gauss)公式公式 通量與散度通量與散度21解解(如圖如圖)計(jì)算曲面積分計(jì)算曲面積分繞繞y軸旋轉(zhuǎn)曲面方程為軸旋轉(zhuǎn)曲面方程為一周所成的曲面一周所成的曲面,它的法向量與它的法向量與y軸正向的夾角軸正向的夾角繞繞y軸旋轉(zhuǎn)軸旋轉(zhuǎn)高斯高斯(Gauss)公式公式 通量與散度通量與散度22取右側(cè)取右側(cè).有有 高斯公式高斯公式柱柱坐坐標(biāo)標(biāo)高斯高斯(Gauss)公式公式 通量與散度通量與散度23取右側(cè)取右側(cè)故故高斯高斯(Gauss)公式公式 通量與散度通量與散度241.通量通量為向量場(chǎng)為向量場(chǎng) 設(shè)有一向量場(chǎng)設(shè)有一向量場(chǎng)則稱沿場(chǎng)中則稱沿場(chǎng)中有向曲面有向曲面某一側(cè)的曲面積分某一側(cè)的曲面積分:通量通量.flux divergence穿過(guò)曲面穿過(guò)曲面這一側(cè)的這一側(cè)的高斯高斯(Gauss)公式公式 通量與散度通量與散度二、物理意義二、物理意義 通量通量與與散度散度上式即為通量的計(jì)算公式上式即為通量的計(jì)算公式252.散度散度設(shè)有向量場(chǎng)設(shè)有向量場(chǎng)為場(chǎng)中任一點(diǎn)為場(chǎng)中任一點(diǎn),在在P點(diǎn)的某鄰域內(nèi)作一包含點(diǎn)的某鄰域內(nèi)作一包含P點(diǎn)在其內(nèi)的閉曲面點(diǎn)在其內(nèi)的閉曲面它所圍成的小區(qū)域及其體積記為它所圍成的小區(qū)域及其體積記為表示表示內(nèi)穿出的通量?jī)?nèi)穿出的通量,若當(dāng)若當(dāng)縮成縮成P點(diǎn)時(shí)點(diǎn)時(shí),極限極限高斯高斯(Gauss)公式公式 通量與散度通量與散度記為記為散度散度.存在存在,則該極限值就稱為向量場(chǎng)則該極限值就稱為向量場(chǎng)在在P點(diǎn)處的點(diǎn)處的即即26散度的計(jì)算公式散度的計(jì)算公式設(shè)設(shè)均可導(dǎo)均可導(dǎo),點(diǎn)處的散度為點(diǎn)處的散度為高斯公式高斯公式散度:散度:?jiǎn)挝粫r(shí)間單位體積內(nèi)所產(chǎn)生的流體質(zhì)量的平單位時(shí)間單位體積內(nèi)所產(chǎn)生的流體質(zhì)量的平均值。均值。27例例 向量場(chǎng)向量場(chǎng)解解高斯高斯(Gauss)公式公式 通量與散度通量與散度28設(shè)函數(shù)設(shè)函數(shù)解解先求梯度先求梯度高斯高斯(Gauss)公式公式 通量與散度通量與散度29再求再求的散度的散度.高斯高斯(Gauss)公式公式 通量與散度通量與散度設(shè)函數(shù)設(shè)函數(shù)30高斯高斯Gauss公式公式物理意義物理意義-通量通量與與散度散度高斯高斯(Gauss)公式公式 通量與散度通量與散度三、小結(jié)三、小結(jié)表達(dá)了空間閉區(qū)域上的三重積分與其表達(dá)了空間閉區(qū)域上的三重積分與其邊界曲面上的曲面積分之間的關(guān)系邊界曲面上的曲面積分之間的關(guān)系.高斯高斯Gauss公式的實(shí)質(zhì)公式的實(shí)質(zhì)(注意使用的條件注意使用的條件)31思考題思考題曲面曲面應(yīng)滿足什么條件才能使高斯公式成立?應(yīng)滿足什么條件才能使高斯公式成立?高斯高斯(Gauss)公式公式 通量與散度通量與散度解答解答曲面應(yīng)是分片光滑的曲面應(yīng)是分片光滑的閉閉曲面曲面.32作作 業(yè)業(yè)習(xí)題習(xí)題11-6(23611-6(236頁(yè)頁(yè))1.(1)(3)(5)高斯高斯(Gauss)公式公式 通量與散度通量與散度33

注意事項(xiàng)

本文(高等數(shù)學(xué)高斯公式)為本站會(huì)員(仙***)主動(dòng)上傳,裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng)(點(diǎn)擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因?yàn)榫W(wǎng)速或其他原因下載失敗請(qǐng)重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  sobing.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!